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ABSTRACT Clinical disease from Clostridioides difficile infection can be mediated by
two toxins and their neighboring regulatory genes located within the five-gene patho-
genicity locus (PaLoc). We provide several lines of evidence that the cytotoxicity of C.
difficile may be modulated by genomic variants outside the PaLoc. We used a phyloge-
netic tree-based approach to demonstrate discordance between cytotoxicity and PaLoc
evolutionary history, an elastic net method to show the insufficiency of PaLoc var-
iants alone to model cytotoxicity, and a convergence-based bacterial genome-wide
association study (GWAS) to identify correlations between non-PaLoc loci and changes
in cytotoxicity. Combined, these data support a model of C. difficile disease wherein
cytotoxicity may be strongly affected by many non-PaLoc loci. Additionally, we charac-
terize multiple other in vitro phenotypes relevant to human infections, including ger-
mination and sporulation. These phenotypes vary greatly in their clonality, variability,
convergence, and concordance with genomic variation. Finally, we highlight the inter-
section of loci identified by the GWAS for different phenotypes and clinical severity.
This strategy to identify overlapping loci can facilitate the identification of genetic vari-
ation linking phenotypic variation to clinical outcomes.

IMPORTANCE Clostridioides difficile has two major disease-mediating toxins, A and B,
encoded within the pathogenicity locus (PaLoc). In this study, we demonstrate via mul-
tiple approaches that genomic variants outside the PaLoc are associated with changes
in cytotoxicity. These genomic variants may provide new avenues of exploration in the
hunt for novel disease-modifying interventions. Additionally, we provide insight into
the evolution of several additional phenotypes also critical for clinical infection, such as
sporulation, germination, and growth rate. These in vitro phenotypes display a range of
responses to evolutionary pressures and, as such, vary in their appropriateness for cer-
tain bacterial genome-wide association study approaches. We used a convergence-
based association method to identify the genomic variants most correlated with both
changes in these phenotypes and disease severity. These overlapping loci may be im-
portant for both bacterial function and human clinical disease.

KEYWORDS Clostridioides difficile, Clostridium difficile, GWAS, bGWAS, WGS, cytotoxins,
evolution, genomics, tcdB, toxin

C lostridioides difficile is a toxin-producing, healthcare-associated bacterial pathogen.
It exhibits extensive genetic variation due to its highly mobile genome, a large

pangenome, and a most recent common ancestor for clades C1 to C5 dating back
approximately 3.89 million years (1, 2). Such genomic variability has enabled C. difficile
adaptation to multiple host species and spread among humans in both nosocomial
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and community contexts (3). Underlying this genetic variation is phenotypic variation
in many traits, including toxin production, sporulation, germination, growth, and viru-
lence (4). This genetic and phenotypic variation has led many to ask whether different
genetic backgrounds of C. difficile may differ in their propensity to cause severe infec-
tions. To this end, many studies have sought to identify key genetic traits harbored by
putative hypervirulent strains, such as ribotype 027 (RT027). Despite this interest and
intense study, the genetic basis for variation in phenotypes relevant to the C. difficile
infection life cycle remains limited.

Disease during C. difficile infection is mediated by extracellular toxins, primarily
toxin A (TcdA) and toxin B (TcdB), which damage the cytoskeletons of intestinal cells,
leading to cell death and gut inflammation. These two toxins are large proteins with
four domains: glucosyltransferase, autoprotease, pore forming, and C-terminal com-
bined repetitive oligopeptides (CROPs) (5). Toxins A and B are both located within the
pathogenicity locus (PaLoc) with three other genes: tcdR, tcdC, and tcdE. tcdR is a posi-
tive regulator of tcdA and tcdB and encodes an RNA polymerase factor (6). tcdC may be
a negative regulator of tcdR (6). tcdE encodes a holin-like protein and may contribute
to toxin secretion (7). Many factors and systems are implicated in PaLoc regulation,
including growth phase, access to specific metabolites, sporulation, quorum sensing,
and some flagellar proteins (8). In addition to toxin production, other phenotypes may
influence C. difficile disease severity or transmission, including sporulation, germina-
tion, and growth (9–11).

Approaches for uncovering the genomic determinants of bacterial phenotypes
such as cytotoxicity include in vitro assays, comparative genomics, and bacterial ge-
nome-wide association studies (bGWAS). An advantage of bGWAS is the ability to sift
through existing genetic variation in bacterial populations to identify variants associ-
ated with natural phenotypic variation. In this way, bGWAS can provide insight into
phenotypic evolution and enable the identification of variants of interest that mediate
modulation of clinically relevant phenotypes such as virulence (12). Here, we capital-
ized on a diverse collection of over 100 C. difficile isolates for which multiple pheno-
types had previously been characterized (4). We performed whole-genome sequencing
and used a bGWAS to uncover novel genotype-phenotype associations. We explore
these genotype-phenotype associations and describe the phenotype variation through
phylogenetic and evolutionary analyses. Our analyses reveal the influence of genetic
variation on phenotypic variation and help illuminate factors that may be influencing
clinical disease.

RESULTS
Distinct evolutionary trajectories of clinically relevant C. difficile phenotypes.

To improve our understanding of the evolution of phenotypic diversity in C. difficile,
we performed whole-genome sequencing on a clinical isolate collection that had pre-
viously been assayed for cytotoxicity (a measure that combines the impacts of toxin
production, secretion, and activity on Vero cell viability), two measures of germination,
two measures of sporulation, and growth rate (4, 10). Overlaying these phenotypes on
a whole-genome phylogeny revealed distinct patterns for each phenotype (Fig. 1).
Figure 1 displays differences in the variability, degree of convergence, and clonality of
these phenotypes. Next, we quantify these differences using a collection of statistical
approaches and weave these results into a narrative describing the evolutionary paths
for each phenotype.

We quantify phenotype clonality using phylogenetic signal. Phylogenetic signal
measures the degree to which closely related samples on a phylogenetic tree are more
similar to each other than to random samples. A phenotype whose close neighbors are
similar in value but for which random samples are highly variable is said to be modeled
well by Brownian motion and has a l value near 1. In contrast, a phenotype where val-
ues are randomly distributed across the tree is modeled well by white noise and has a
l value near zero (13). Cytotoxicity and germination in taurocholate (TCA) and glycine
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(Gly) are clonal phenotypes that show stable inheritance within lineages, as evidenced
by the high phylogenetic signal (Fig. 2A). For example, cytotoxicity displays clonal line-
ages with uniformly high (e.g., RT027) and low (e.g., RT014) cytotoxicity (Fig. 1). In con-
trast, germination in TCA and growth rate are less clonal, with extensive variation even
within clonal lineages (Fig. 1 and Fig. 2A). Finally, the two sporulation phenotypes
show the least clonality, with virtually no clustering on the phylogeny (Fig. 1 and
Fig. 2A). Overall, the range in clonality and phylogenetic signal observed for these phe-
notypes suggests that despite all being central to the C. difficile life cycle, they are
shaped by different evolutionary pressures.

In addition to varying in their clonality, the six phenotypes show distinct differences
in their overall degree of dispersion (Table 1). Dispersion describes how spread out

FIG 1 Clinical C. difficile sample phenotypes aligned with the phylogenetic tree. Previous experiments by Carlson et al. characterized germination after a 30-
min incubation in 0.1% taurocholate (TCA) (percent), germination after a 30-min incubation in 0.1% TCA and 0.4% glycine (Gly) (percent), maximum growth
rates over a 48-h growth period (OD600/hour), total spore production (heat-resistant CFU per milliliter), spore viability (percent), and cytotoxicity of the C. difficile
supernatant on Vero cells (equivalent toxin B activity in nanograms per milliliter) (4, 10). In vitro phenotypes were natural-log transformed. Isolates were
collected from stool samples of patients with either severe (bar present) or nonsevere (bar absent) C. difficile infections. Color indicates ribotype. ND, no data.
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each phenotype is from its mean. Higher values indicate more variability, and lower
values indicate more uniformity. Cytotoxicity had the largest dispersion, with a geo-
metric coefficient of variation of 5.4. The combination of high clonality and high disper-
sion in cytotoxicity suggests that C. difficile may have evolved multiple successful toxin
strategies or may have different evolutionary trajectories that are difficult to escape
once begun. In contrast, the near uniformity observed in germination in TCA and Gly
could indicate either strong stabilizing selection or inadequate precision of the assay.

Phenotypes vary with respect to their association with genetic variation. Next,
we sought to understand the degree to which phenotypic variability in this data set is
genetically encoded. We describe this phenotype-genotype relationship with a linear
model for each phenotype. In the linear models, a phenotype is the response variable
and genomic variants are the explanatory variables. Linear models were constructed
via elastic net regularization. We report the R2 values of the best-fitting model and
compare these values to the best values from the negative controls (Fig. 2B). Growth
rate, both sporulation phenotypes, and gemination in TCA and Gly have low R2 values,
all ,0.50. Germination in TCA has a high R2 value, 0.99, but this finding appears to be
spurious as two of the three negative controls using randomly permuted data have
similarly high R2 values: 0.00, 0.91, and 1.00. The phenotype best modeled by genomic
variants is cytotoxicity, with an R2 value of 0.90 and a distinct separation between the
observed value and the values of the negative controls. The germination and total
spores phenotypes are so poorly encoded by genomic variation (both R2 = 0.0) that
these assays may lack sufficient precision to capture relevant strain variation, while cy-
totoxicity appears far more genetically deterministic.

Phenotypes show a range in their levels of phylogenetic convergence. A striking
feature observed when overlaying the phenotype panel on the whole-genome phylog-
eny was variation in the frequency of convergence of high or low phenotype values.

FIG 2 Phenotype phylogenetic signal and genomic model. (A) Phylogenetic signal (l) of each phenotype (black) or scrambled
phenotypes (gray). A near-zero l value indicates a phenotype that appears independent of the phylogeny. Values of l near 1 more
closely approximate a random walk along the tree. (B) R2 values from the best linear model per phenotype (black) or scrambled
phenotypes (gray). Linear models were generated by an elastic net approach. High R2 values indicate that the phenotype is strongly
encoded by genetic variation in SNPs. Synonymous SNPs were excluded from this analysis.

TABLE 1 Dispersion (geometric coefficient of variation) and convergence (ratio metric of convergence) of the natural-log-transformed
phenotypes

Germination
in TCA

Germination in
TCA and Gly

Maximum
growth rate

Total
spores

Spore
viability Cytotoxicity

Geometric coefficient of variation 2.8 0.4 0.5 2.2 0.6 5.4
Ratio metric of convergence 46.8 18.0 43.0 38.7 27.3 33.0
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Convergence, the independent evolution of a trait, may imply the existence of environ-
mental pressures that select for a specific value or constrain the phenotype’s value. To
quantify the convergence of the different phenotypes, we employed the ratio metric,
where a higher ratio metric value suggests more episodes of convergence. Germination in
TCA has the most convergence, at 46.8. The germination in TCA and Gly and spore viability
phenotypes have the least convergence, at 18.0 and 27.3, respectively. The remaining phe-
notypes demonstrate intermediate levels of phylogenetic convergence. There is a striking
difference in the convergence of the two germination phenotypes. The low ratio metric
in germination in TCA and Gly may be a result of the lack of variability in the pheno-
type. Germination in TCA and Gly is highly uniform, and thus, there cannot be much
convergence to observe. It may be that the permissive laboratory conditions of the ger-
minant TCA plus the cogerminant glycine overpower subtle differences in germination
aptitude detectable under the more stringent TCA-only condition. Below, we seek to
exploit the high level of convergence in certain phenotypes to identify genetic drivers
of their variation.

Identifying genetic variation associated with phenotypic variation through a
genome-wide association study. Having observed differences in the evolutionary
patterns of different phenotypes, we next sought to identify the specific genetic varia-
tion that may be underlying phenotypic variation by performing a genome-wide asso-
ciation study (GWAS) for each phenotype. Due to the high convergence in several of
the phenotypes (Table 1) and extensive genetic variation in our isolate collection, we
opted for a convergence-based GWAS approach that could identify variants of interest
by their nonrandom coconvergence with a phenotype. The genotypes tested included
approximately 69,600 single nucleotide polymorphisms (SNPs), 8,400 indels, and 7,500
accessory genes. Significantly associated variants were identified for growth rate, total
spores, cytotoxicity, germination in TCA, and severity (Table 2).

Overlapping GWAS results. Despite the phenotypes showing distinct evolutionary
patterns, we first explored whether there was evidence of overlap in the genetic circuits
modulating the different traits. We cataloged the extent of this overlap by counting the
number of intersecting genomic loci with both high significance and convergence in each
pair of GWAS results. Three of the four phenotypes shared more hits with the severe-infec-
tion GWAS results than expected by chance via a permutation test (Fig. 3A). Cytotoxicity
and severe infection have the most overlap, with 7 shared loci. These shared loci include
six accessory genes and a frameshift mutation at glycine 209 in flagellar hook-associated
protein 2 (fliD) (Fig. 3B). The fliD finding is consistent with known coregulation that occurs
between flagellar and toxin systems in C. difficile that is mediated in part by SigD, a sigma
factor that binds to a tcdR promoter region and positively regulates tcdR (14).

Genetic variation associated with modulation of cytotoxicity. For the remainder
of our analysis, we focused on understanding genetic variation associated with varia-
tion in cytotoxicity. In addition to the central role of toxin in C. difficile disease, our de-
cision to focus on toxin was motivated by it being the phenotype being best explained
by genetic variation in sequenced strains (Fig. 2B). In the following sections, we exam-
ine variants playing a key role in modulating cytotoxicity.

The cytotoxicity GWAS identified many genomic variants of interest. Two hundred
twenty loci were significantly associated with cytotoxicity changes (above the horizon-
tal red line), 40 loci had high levels of convergence (right of the vertical red line), and 8

TABLE 2 GWAS results for each phenotypea

Germination in
TCA

Germination in
TCA and Gly Growth rate Total spores Viable spores Cytotoxicity Severity

Significant and highly convergent 6 0 10 3 0 8 1,052
Significant 260 0 398 2,894 1,768 220 1,700
Highly convergent 122 0 37 3 2 40 1,117
aReported values for severity are derived by the Synchronous Test, while all other results are derived by the Continuous Test. Significant loci have an FDR of,15%. Highly
convergent loci have an « value of.0.15.
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loci both were significantly associated and had high levels of convergence (upper right
quadrant) (Fig. 4A). As the PaLoc harbors toxin genes and regulators, we expected that
variants located within the PaLoc would be significantly associated with cytotoxicity
and used this as a positive control for our analysis. Consistent with this, we observed
PaLoc variants in the pool of significant results associated with cytotoxicity. Eighty-
seven of the 220 loci significantly associated with cytotoxicity occur in the PaLoc.
Given that the cytotoxicity assay used is based on a standard curve measuring toxin B ac-
tivity, it is particularly striking that these 87 PaLoc loci include 75 tcdB variants and 2 tcdR-
tcdB intergenic region variants but no variants within tcdA (Fig. 4B). Indeed, these variants
are significantly enriched compared to the number of variants within or flanking tcdB that
are expected by chance using a permutation approach (P = 0.0001) (median = 1; range = 0
to 10). tcdB variants were found in all four protein domains, but the significantly associ-
ated variants are found mostly within the glucosyltransferase and autoprotease domains
(Fig. 4B). Certain significant missense variants within tcdB have plausible functional

FIG 3 Overlapping GWAS results. (A) Heatmap indicating the number of shared GWAS results with significant P values and high levels of convergence in
the Continuous Test (continuous phenotypes) or Synchronous Test (severity). Asterisks indicate significantly more overlapping results than expected by
chance (P , 0.05). The two phenotypes lacking any GWAS results with significant P values and high levels of convergence were excluded. (B) Shared hits
between the cytotoxicity and severe infection GWAS. (Top) Phenotypes. (Middle) Heatmap indicating the presence of loci with both significant P values
and high levels of convergence in both cytotoxicity and severity GWAS results from panel A. (Bottom) Phylogenetic tree labeled by ribotype.
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impacts on toxin B, such as an adenosine-to-cytosine transversion at position 1967 that
changes an aspartic acid to alanine (P = 0.12); this mutation occurs near the zinc binding
site and could theoretically affect toxin autoprocessing within the host cell. Of the 15
tested variants that occur within the tcdR-tcdB intergenic region, 6 were significantly asso-
ciated with cytotoxicity (all P # 0.12). Three of these variants occur within a tcdB pro-
moter, suggesting a potential role in modulating sigma factor binding and therefore alter-
ing tcdB transcription. A notable lack of association was observed for an adenosine
deletion at nucleotide 117 in tcdC that has been suggested to cause increased toxin pro-
duction in RT027 (P = 0.95) (15). This deletion was found in all 26 RT027 samples as well
as 3 additional samples (“other” ribotype) but did not reach significance in the GWAS
(P = 0.95).

Next, we sought to generate hypotheses about new associations between genomic
variants and cytotoxicity that reside outside the PaLoc. The 8 variants that were signifi-
cant and had a high « value, a metric of shared genotype-phenotype convergence, are
cataloged in Data Set S1 in the supplemental material, plotted in Fig. 4C, and listed in
Table 3 (16). A single « value captures the number of tree edges where both a genotype
is mutated and the cytotoxicity value has a large change. « values close to zero suggest

FIG 4 Genome-wide association study identified genomic variants associated with cytotoxicity variation. (A) GWAS results. Tested loci are either accessory
genes (blue) (n = 4,352), SNPs (pink) (n = 12,167), or indels (green) (n = 1,843). The red horizontal line indicates a false discovery rate of 15%. The red
vertical line separates low from high convergence. (B) Significantly associated loci from the GWAS located in the PaLoc. Of the 633 PaLoc variants (SNPs,
n = 563; indels, n = 70) tested by the GWAS, only the variants significantly associated are plotted as vertical bars (SNPs, n = 71; indels, n = 16). (Top
annotation) Toxin protein domains in tcdA and tcdB. (Middle annotation) Gene. (Bottom annotation) Promoter locations. (C, left) Phylogenetic tree labeled
by ribotype. (Middle) Heatmap indicating the presence of loci significantly associated with cytotoxicity and with high convergence. (Right) Cytotoxicity.
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that the genotype mutates on very few edges where the cytotoxicity changes drastically.
The loci associated with changes in cytotoxicity are present in multiple, independent lin-
eages (Fig. 4C). The above-mentioned frameshift mutation in fliD is the variant most
strongly associated with changes in cytotoxicity when ranked by « and then P value
(P = 0.12; « = 0.20). The next most strongly associated variant is an accessory gene,
“group_1730,” generated by the pangenome detection tool roary (P = 0.12; « = 0.19).
This accessory gene is orthologous to CD630_21340, which is annotated as a diguanylate
cyclase/phosphodiesterase in the CD630 reference genome. The other most strongly
associated variants are unannotated accessory genes and CD630_18290 (kdpD), a histi-
dine kinase. The significant accessory genes identified by this analysis represent candi-
dates for future mechanistic studies dissecting C. difficile cytotoxicity and could be priori-
tized for further characterization.

Genetic variation at the PaLoc accounts for only half of the phenotypic variation
in cytotoxicity. The GWAS identified both PaLoc and non-PaLoc loci correlated with
variation in cytotoxicity. To understand the relative contribution of genetic variation in
the PaLoc to variation in cytotoxicity, we employed an elastic net approach. Models of
cytotoxicity constructed with different subsets of variants found that PaLoc variants
and tcdB variants have similar abilities to model cytotoxicity (R2 = 0.48 and R2 = 0.46,
respectively) (Fig. 5A). However, variants from the whole genome build a more accu-
rate model of cytotoxicity (R2 = 0.90) (Fig. 5A). Of the 634 variants in the PaLoc, 404
(64%) occur in tcdB or its flanking intergenic regions; in the best-performing elastic net
model derived from PaLoc variants, 34/61 (56%) of the variants are mutations in tcdB
or its flanking regions. In the whole-genome model, only 17/1,795 (1%) of the variants
occur in tcdB or its flanking regions.

To assess the capacity of PaLoc variation to model cytotoxicity in a different way,
we compared phylogenetic trees built from whole-genome variants and the tcdB gene.
As there is far less variation in tcdB than in the whole genome, we observe many polyt-
omies in the tcdB gene tree and none in the whole-genome tree (Fig. 5B and C). While
the tcdB gene tree’s cytotoxicity is better modeled by Brownian motion (l = 0.94) than
in the whole-genome tree (l = 0.75) (Fig. 2A), there remains much cytotoxicity varia-
tion unexplained by tree structure. Given the unexplained cytotoxicity variation on the
tcdB gene tree and variation not captured in the cytotoxicity elastic net model, we con-
clude that while tcdB gene variation is likely an important mediator of the evolution of
cytotoxicity, other loci play a key role as well. Finally, the whole-genome model sug-
gests that many loci besides tcdB may affect C. difficile toxicity. This finding is consist-
ent with reports that some non-PaLoc loci contribute to toxin regulation (8, 17–19).

DISCUSSION

C. difficile is a genetically diverse pathogen, with extensive variation in both its core
and accessory genome. Currently, we have a limited understanding of the func-
tional impact of most of this variation and how it relates to C. difficile infection.
Here, we attempted to improve our understanding of the genotype-to-phenotype
map in C. difficile by analyzing variation in clinically relevant phenotypes in the context

TABLE 3 Cytotoxicity GWAS resultsa

Locus P value « Annotation Variant type Rank
fliD (deletion at positions 626–627
leading to frameshift mutation)

0.11 0.20 Flagellar hook-associated protein 2 Deletion 1

Group_1730 0.11 0.19 GGDEF domain Accessory gene 2
Group_4219 0.11 0.19 None assigned Accessory gene 3
Group_773 0.11 0.18 None assigned Accessory gene 4
Group_4116 0.14 0.18 None assigned Accessory gene 5
Group_2337 0.11 0.18 None assigned Accessory gene 6
Group_3857 0.11 0.18 CD630_18290; kdpD; ATPase histidine

kinase DNA gyrase B HSP90 domain
Accessory gene 7

Group_5606 0.11 0.15 None assigned Accessory gene 35
aLoci have an FDR of,15% and an « value of.0.15. Locus names for accessory genes were generated by roary. Where possible, additional gene annotations are provided.
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FIG 5 tcdB variation does not fully model cytotoxicity. (A) Elastic net model performance of
cytotoxicity. Models were built from tcdB variants, PaLoc variants, or whole-genome (WG) variants.
(B and C) Cytotoxicity with a tree built from the whole genome (B) or just tcdB (C).
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of C. difficile genomic variants. We observe that despite their central role in the C. difficile
transmission-and-infection cycle, sporulation, germination, growth, and cytotoxicity
show distinct evolutionary trajectories. Focusing on the phenotype thought to be most
closely linked to virulence, we observe that cytotoxicity is highly clonal, with lineages
tending to possess either high or low cytotoxicity. Consistent with previous reports, we
find that variation in toxicity can be modulated by variants in the PaLoc; however, we
find that more than 50% of the phenotypic variation is associated with genetic variation
outside the PaLoc.

Our exploration of these C. difficile phenotypes revealed a broad range of clonality,
dispersion, association with genomic variation, and convergence. As such, each pheno-
type appears to be shaped by different selection forces. The existence of phenotypes
that show no association with the recombination-filtered phylogeny could indicate ei-
ther a lack of precision in the laboratory assay or a strong role for recombinant genomic
regions in shaping these phenotypes. We focused our analysis on cytotoxicity, in part,
because of the precision of the in vitro assay results and its high degree of genetic
determinism. Regardless of the basis for the lack of phylogenetic signal in some of
the nontoxin phenotypes, these results show how overlaying phenotypic variation
on whole-genome phylogenies provides useful context for interpreting and scruti-
nizing experimental measurements and, in this case, clearly demonstrates the rich
and varied patterns of evolution among C. difficile strains.

Toxigenic bacterial species that require live transmission may undergo strong selective
pressure to promote host survival and therefore bias toward lower toxin activity (20). In con-
trast, sporogenic C. difficile can survive and transmit even after the host dies; this may reduce
the strength of selection on toxicity, and therefore, many different toxin strategies are success-
ful. Indeed, there are prolific toxigenic and nontoxigenic strains of C. difficile. Additionally, the
species has had multiple independent losses of the PaLoc (21), with our results indicating that
even strains harboring an intact PaLoc may evolve to have decreased cytotoxicity. The C. diffi-
cile strains with high cytotoxicity may have success by shaping a hostile metabolic state in the
host gut that these bacteria are able to uniquely exploit (22) or its more severe, inflammatory
infection, which results in diarrhea and, therefore, increased transmission. This then raises the
question of what the selective pressure for lower cytotoxicity may be. One possibility is that cy-
totoxicity itself may not be the most critical aspect of the toxin upon which evolution is acting,
with other aspects such as toxin immunogenicity potentially evoking a stronger selection pres-
sure. Toxin that evades immune recognition could lead to longer infections and, therefore,
increased transmission, so the strongest selective pressure may be at the surface domains of
the toxin proteins rather than on regulators of toxin activity (21). For example, we observed
multiple missense variants on the surface of tcdB in this isolate collection, including a glutamic
acid 329-to-glycine missense variant and a threonine 430-to-alanine variant.

Our study has several important limitations. First, the limited sample size of this C.
difficile collection could lead to an underreporting of the clonality of some phenotypes
for underrepresented ribotypes and limit the power to detect variation with smaller
phenotypic impacts. Second, many genomic features such as copy number variants,
large structural variants, and plasmids were not included in our GWAS or elastic net
models; therefore, these analyses are missing some genome-encoded information.
Similarly, we were not able to capture the impact of genetic switches, such as the small
inversion that acts as a dynamic flagellar switch, which has been shown to impact toxin
gene expression and toxin secretion (19). We also did not consider the impact of epi-
static interactions between genomic variants on phenotypes. Third, the toxin assay
used measures the impact of the C. difficile supernatant on Vero cells. Therefore, this
assay measures the combined impacts of toxin production, toxins secreted into the su-
pernatant, and the activity of the toxin proteins. Future work could separate the
impacts of genomic variants on toxin secretion and toxin activity.

A replication study in a second C. difficile cohort in which the toxin assay and GWAS
are repeated could help prioritize the genomic variants more likely to be causal of
changes in cytotoxicity. The loci identified in both this study and the proposed study
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would be higher-confidence candidates for experiments that examine the effect of
those potential variants on cytotoxicity. Additional studies investigating C. difficile in
vitro phenotypes from an evolutionary perspective would help to prioritize the pheno-
types that may offer the most insight into the success and regulation of certain strains.

MATERIALS ANDMETHODS
Study population. The University of Michigan Institutional Review Board approved all sample and

clinical data collection protocols used in this study (HUM00034766). Where applicable, written, informed
consent was received from all patients prior to inclusion in this study. Stool samples were collected from
a cohort of 106 Michigan Medicine patients with C. difficile infection from 2010 to 2011, which included
all severe cases during the study period (4, 10). Cases were classified as severe if the infection required
intensive care unit (ICU) admission or interventional surgery or if the patient died within 30 days of
infection diagnosis. A clonal spore stock from each patient was used for ribotyping and in vitro studies.

In vitro characterization. Previous experiments characterized the in vitro qualities of the isolate col-
lection (4, 10). Below, we briefly summarize each assay (for further details, see references 4 and 10).
Taurocholate (TCA) is a physiologic bile salt known to cause C. difficile germination; glycine is a cogermi-
nant that can increase germination with taurocholate (23). Germination was performed in 0.1% TCA for
30 min. After a 1:10 dilution to halt further germination, samples were serially diluted and plated onto
brain heart infusion-supplemented (BHIS) with or without 0.1% TCA. CFU counts are reported as the per-
centage of BHIS only/BHIS plus 0.1% TCA. The germination assay was repeated in 0.1% TCA and 0.4%
glycine. Maximum growth rates (optical density at 600 nm [OD600]/hour) were calculated from OD read-
ings taken every 10 min over a 48-h period. Total spore production, defined as heat-resistant CFU per milli-
liter, was calculated as CFU per milliliter after (i) a 24-h growth period followed by (ii) a heat treatment (65°C
for 30 min) to kill vegetative cells and finally (iii) plating. Spore viability is reported as the percentage of
CFU/spores plated. The cytotoxicity assay measured the effect of the cell-free, toxin-containing C. difficile su-
pernatant on Vero cell viability. It measured the combined impacts of toxin production, secretion, and activ-
ity. A standard curve was produced by exposing Vero cells to known quantities of toxin B (nanograms per
milliliter). Samples were classified as severe infections if they were collected from a patient whose C. difficile
infection required ICU admission or interventional surgery or if the patient died within 30 days of infection
diagnosis (4, 10).

Genomic analysis. The spore stocks were grown in an anaerobic chamber overnight on taurocho-
late-cefoxitin-cycloserine-fructose agar plates. The next day, a single colony of each sample was picked
and grown in brain heart infusion medium with yeast extract liquid culture medium overnight. The veg-
etative C. difficile cells were pelleted by centrifugation and washed, and total genomic DNA was then
extracted. Genomic DNA extracted with the MoBio PowerMag microbial DNA isolation kit (Qiagen) from
C. difficile isolates (n = 108) was prepared for sequencing using the Illumina Nextera DNA Flex library
preparation kit. Sequencing was performed on either an Illumina HiSeq 4000 system at the University of
Michigan Advanced Genomics Core or an Illumina MiSeq system at the University of Michigan Microbial
Systems Molecular Biology Laboratories. The quality of reads was assessed with FastQC v0.11.9 (24).
Adapter sequences and low-quality bases were removed with Trimmomatic v0.36 (25). Variants were
identified by mapping filtered reads to the CD630 reference genome (GenBank accession number
AM180355.1) using bwa v0.7.17 (26), removing PCR duplicates with Picard 2.21.7 (27), removing clipped
alignments using Samclip 0.4.0 (28), and calling variants with SAMtools v1.11 and bcftools (29). Variants
were filtered from raw results using GATK’s VariantFiltration v3.8 (quality score [QUAL], .100; root mean
square mapping quality [MQ], .50; $10 reads supporting the variant; consensus quality [FQ] ,0.025)
(30). SNPs and indels were referenced to the ancestral allele using snitkitr v0.0.0.9000 (31). Pangenome
analysis was performed with roary (32). Annotations were assigned by prokka v1.14.5 (33) and emapper-
2.1.7 based on eggNOG orthology data (34, 35). Sequence searches were performed using DIAMOND
(36). Gene prediction was performed using Prodigal (37). Gene annotation results are accessible in Data
Set S7 in the supplemental material. Binary toxin genes, cdtA and cdtB, were not identified in the pange-
nome generated from this collection, and therefore, binary toxin was excluded from the analysis.

Phylogenetic analysis. Consensus files generated during variant calling were recombination filtered
using Gubbins v3.0.0 (38). The alleles at each position that passed filtering were concatenated to gener-
ate a noncore variant alignment relative to the CD630 reference genome. Alleles that did not pass filter-
ing were considered unknown (denoted N in the alignment). Variant positions in the alignment were
used to reconstruct a maximum likelihood phylogeny with IQ-TREE v1.5.5 using ultrafast bootstrapping
with 1,000 replicates (39, 40). ModelFinder limited to ascertainment bias-corrected models was used to
identify the best nucleotide substitution model (41). The tree was midpoint rooted. The tcdB multiple-
sequence alignment was built by PRANK v.170427 using only the tcdB gene, and the resulting tree was
midpoint rooted (42). The trees are available in Data Sets S5 and S6.

Genome-wide association studies. GWAS were performed with hogwash v1.2.4 (16). Phenotype
data were natural-log transformed. Hogwash settings were a bootstrap threshold of 0.95, 10,000 permu-
tations, and a false discovery rate (FDR) of 15%. The analysis included SNPs, indels, and accessory genes.
The intersection of hogwash results was restricted to results with an « value of .0.15 and a P value of
,0.15. Only SNPs classified as having a “moderate,” “high,” or “modifier” impact by SnpEff v4.3.1 were
included (43).

Data analysis. Data analysis with R v3.6.2 (44) was performed with the following packages: ape v5.3
(45), aplot v0.0.6 (46), data.table v1.12.8 (47), ggtree v2.0.4 (48), ggpubr v0.4.0 (49), pheatmap v1.0.12
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(50), phytools v0.6-99 (51), and tidyverse v1.3.0 (52). Conda v4.9.2 was used to maintain working environ-
ments (53). Analysis code is available at https://github.com/katiesaund/cdifficile_gwas.

Permutation testing. The empirical P values for enrichment of toxin variants in the significant GWAS
results and shared results in the overlapping GWAS section were generated via permutation testing. This
approach generates a P value by comparing the observed number of events in the data to a distribution of
the number of events simulated under the null hypothesis. The null distribution was generated from ran-
dom sampling without replacement repeated in 10,000 trials (toxin variants) or 1,000 trials (overlapping
hits). Multiple-testing correction was applied to the overlapping-hit analysis using Bonferroni correction.

Convergence analysis.We calculated the degree of convergence of each phenotype using the ratio
method (54), which is the ratio of two samples’ pairwise patristic distance divided by their pairwise phe-
notypic distance. We report the average of the scaled pairwise branch length distance (patristic distance)
divided by the scaled pairwise phenotypic distance for each phenotype. A high value suggests an epi-
sode of convergence.

Geometric coefficient of variance. To capture the dispersion of the data sets, we calculated the geo-

metric coefficient of variance,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e s221
p

, where s is the standard deviation of the natural-log-transformed
data. This metric quantifies the degree to which each phenotype is spread out from its mean.

Phylogenetic signal. Phylogenetic signal is a metric that captures the tendency for closely related
samples on a tree to be more similar to each other than they are to random samples on the tree. We cal-
culated phylogenetic signal for each continuous phenotype using Pagel’s l (13). Note that a phenotype
that is modeled well by Brownian motion has a l value near 1. Such a phenotype is strongly reflected in
the tree structure. A phenotype modeled well by white noise has a l value near zero (13). Such a pheno-
type is randomly distributed on a tree and therefore appears to be independent of the phylogeny.
Negative controls for the phenotypes were created by randomly redistributing each phenotype on the tree.

Elastic net modeling. We calculated the degree of genetic encoding of each phenotype by modeling
a phenotype from genomic variants using elastic net regularization as implemented by pyseer. pyseer v1.3
command line arguments were as follows: –wg enet –n-fold 10 (55). The model was trained using 10-fold
cross-validation. We did not use the built models for prediction. We report the best R2 values from cross-val-
idation. SNPs, indels, and accessory genes were all used to model all continuous phenotypes. For all elastic
net models, only SNPs classified as having a “moderate,” “high,” or “modifier” impact by SnpEff were
included (43). Cytotoxicity was additionally modeled by (i) a model built from just PaLoc SNPs and indels
and (ii) a model built from just tcdB SNPs and indels. To determine the value of a, a parameter that controls
the ratio of L1 and L2 regularization in the model, five a values were tested for each model: 0.01, 0.245,
0.500, 0.745, and 0.990. The model results with the highest R2 values are reported. The best a value for
models of germination in TCA, germination in TCA and Gly, total spores, and cytotoxicity (all variants) is
0.01. The best a value for models of viable spores and growth rate is 0.245. The best a value to model cyto-
toxicity (tcdB) is 0.500. The best a value to model cytotoxicity (PaLoc) is 0.745. Negative controls for the phe-
notypes were created by randomly redistributing each phenotype on the tree.

Data availability. Sequence data are available under BioProject accession number PRJNA594943.
Details on sequenced strains are available in Data Set S3 in the supplemental material. Sequences for
genes identified by roary are available in Data Set S4.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, TXT file, 2.6 MB.
DATA SET S2, TXT file, 3.1 MB.
DATA SET S3, TXT file, 0.02 MB.
DATA SET S4, TXT file, 7.8 MB.
DATA SET S5, TXT file, 0.01 MB.
DATA SET S6, TXT file, 0.01 MB.
DATA SET S7, TXT file, 0.9 MB.

ACKNOWLEDGMENTS
K.S. was supported by the National Institutes of Health (T32GM007544). E.S. and A.P.

were supported by the National Institutes of Health (1U01Al124255). Work in the Lacy
lab is supported by NIH AI095755 and VA BX002943.

REFERENCES
1. Mullany P, Allan E, Roberts AP. 2015. Mobile genetic elements in Clostrid-

ium difficile and their role in genome function. Res Microbiol 166:
361–367. https://doi.org/10.1016/j.resmic.2014.12.005.

2. Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D,
Didelot X, Dingle KE, Eyre DW, Rodríguez C, Riley TV. 2021. Major genetic
discontinuity and novel toxigenic species in Clostridioides difficile taxon-
omy. Elife 10:e64325. https://doi.org/10.7554/eLife.64325.

3. Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. 2015. Diversity and
evolution in the genome of Clostridium difficile. Clin Microbiol Rev 28:
721–741. https://doi.org/10.1128/CMR.00127-14.

4. Carlson PE, Jr, Walk ST, Bourgis AET, Liu MW, Kopliku F, Lo E, Young VB,
Aronoff DM, Hanna PC. 2013. The relationship between phenotype, ribo-
type, and clinical disease in human Clostridium difficile isolates. Anaerobe
24:109–116. https://doi.org/10.1016/j.anaerobe.2013.04.003.

C. difficile Toxin GWAS and Evolution mSphere

Month YYYY Volume XX Issue XX 10.1128/msphere.00174-22 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
17

 M
ay

 2
02

2 
by

 2
60

0:
17

00
:8

a1
1:

25
40

:a
53

3:
96

50
:2

d4
8:

cd
10

.

https://github.com/katiesaund/cdifficile_gwas
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA594943
https://doi.org/10.1016/j.resmic.2014.12.005
https://doi.org/10.7554/eLife.64325
https://doi.org/10.1128/CMR.00127-14
https://doi.org/10.1016/j.anaerobe.2013.04.003
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00174-22


5. Pruitt RN, Lacy DB. 2012. Toward a structural understanding of Clostrid-
ium difficile toxins A and B. Front Cell Infect Microbiol 2:28. https://doi
.org/10.3389/fcimb.2012.00028.

6. Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B,
Hamel B, Petit A, Lalande V, Ma L, Bouchier C, Barbut F, Dupuy B. 2015.
Clostridium difficile: new insights into the evolution of the pathogenicity
locus. Sci Rep 5:15023. https://doi.org/10.1038/srep15023.

7. Govind R, Dupuy B. 2012. Secretion of Clostridium difficile toxins A and B
requires the holin-like protein TcdE. PLoS Pathog 8:e1002727. https://doi
.org/10.1371/journal.ppat.1002727.

8. Martin-Verstraete I, Peltier J, Dupuy B. 2016. The regulatory networks that
control Clostridium difficile toxin synthesis. Toxins (Basel) 8:153. https://
doi.org/10.3390/toxins8050153.

9. Burns DA, Minton NP. 2011. Sporulation studies in Clostridium difficile.
J Microbiol Methods 87:133–138. https://doi.org/10.1016/j.mimet.2011
.07.017.

10. Carlson PE, Jr, Kaiser AM, McColm SA, Bauer JM, Young VB, Aronoff DM,
Hanna PC. 2015. Variation in germination of Clostridium difficile clinical
isolates correlates to disease severity. Anaerobe 33:64–70. https://doi
.org/10.1016/j.anaerobe.2015.02.003.

11. Tschudin-Sutter S, Braissant O, Erb S, Stranden A, Bonkat G, Frei R,
Widmer AF. 2016. Growth patterns of Clostridium difficile—correlations
with strains, binary toxin and disease severity: a prospective cohort study.
PLoS One 11:e0161711. https://doi.org/10.1371/journal.pone.0161711.

12. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, Williams P,
Endres JL, Bayles KW, Fey PD, Yajjala VK, Widhelm T, Hawkins E, Lewis K,
Parfett S, Scowen L, Peacock SJ, Holden M, Wilson D, Read TD, Van Den
Elsen J, Priest NK, Feil EJ, Hurst LD, Josefsson E, Massey RC. 2014. Predict-
ing the virulence of MRSA from its genome sequence. Genome Res 24:
839–849. https://doi.org/10.1101/gr.165415.113.

13. Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zool
Scr 26:331–348. https://doi.org/10.1111/j.1463-6409.1997.tb00423.x.

14. El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B,
Pons JL. 2013. Characterization of the SigD regulon of C. difficile and its
positive control of toxin production through the regulation of tcdR. PLoS
One 8:e83748. https://doi.org/10.1371/journal.pone.0083748.

15. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E,
McDonald LC. 2005. Toxin production by an emerging strain of Clos-
tridium difficile associated with outbreaks of severe disease in North
America and Europe. Lancet 366:1079–1084. https://doi.org/10.1016/
S0140-6736(05)67420-X.

16. Saund K, Snitkin ES. 2020. Hogwash: three methods for genome-wide asso-
ciation studies in bacteria. Microb Genom 6:mgen000469. https://doi.org/
10.1099/mgen.0.000469.

17. Antunes A, Martin-Verstraete I, Dupuy B. 2011. CcpA-mediated repression
of Clostridium difficile toxin gene expression. Mol Microbiol 79:882–899.
https://doi.org/10.1111/j.1365-2958.2010.07495.x.

18. Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL. 2007. Repression
of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:
206–219. https://doi.org/10.1111/j.1365-2958.2007.05906.x.

19. Anjuwon-Foster BR, Tamayo R. 2017. A genetic switch controls the pro-
duction of flagella and toxins in Clostridium difficile. PLoS Genet 13:
e1006701. https://doi.org/10.1371/journal.pgen.1006701.

20. Rudkin JK, McLoughlin RM, Preston A, Massey RC. 2017. Bacterial toxins:
offensive, defensive, or something else altogether? PLoS Pathog 13:
e1006452. https://doi.org/10.1371/journal.ppat.1006452.

21. Mansfield MJ, Tremblay BJ-M, Zeng J, Wei X, Hodgins H, Worley J, Bry L,
Dong M, Doxey AC. 2020. Phylogenomics of 8,839 Clostridioides difficile
genomes reveals recombination-driven evolution and diversification of
toxin A and B. PLoS Pathog 16:e1009181. https://doi.org/10.1371/journal
.ppat.1009181.

22. Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR,
Montgomery SA, Theriot CM. 2021. Clostridioides difficile exploits
toxin-mediated inflammation to alter the host nutritional landscape
and exclude competitors from the gut microbiota. Nat Commun 12:
462. https://doi.org/10.1038/s41467-020-20746-4.

23. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for
Clostridium difficile spores. J Bacteriol 190:2505–2512. https://doi.org/10
.1128/JB.01765-07.

24. Andrews S. 2010. FastQC: a quality control tool for high throughput
sequence data. https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/.

25. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10
.1093/bioinformatics/btu170.

26. Li H, Durbin R. 2009. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://
doi.org/10.1093/bioinformatics/btp324.

27. Broad Institute. 2020. Picard tools. Broad Institute, Cambridge, MA. http://
broadinstitute.github.io/picard/.

28. Seemann T. 2020. samclip. https://github.com/tseemann/samclip.
29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Ge-
nome Analysis Toolkit: a MapReduce framework for analyzing next-gen-
eration DNA sequencing data. Genome Res 20:1297–1303. https://doi
.org/10.1101/gr.107524.110.

31. Saund K, Lapp Z, Thiede SN. 2021. snitkitr.
32. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes

M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote
pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10
.1093/bioinformatics/btv421.

33. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinfor-
matics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

34. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J.
2021. eggNOG-mapper v2: functional annotation, orthology assign-
ments, and domain prediction at the metagenomic scale. Mol Biol Evol
38:5825–5829. https://doi.org/10.1093/molbev/msab293.

35. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK,
Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, Von Mering C, Bork P.
2019. EggNOG 5.0: a hierarchical, functionally and phylogenetically
annotated orthology resource based on 5090 organisms and 2502
viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/
gky1085.

36. Buchfink B, Reuter K, Drost HG. 2021. Sensitive protein alignments at
tree-of-life scale using DIAMOND. Nat Methods 18:366–368. https://doi
.org/10.1038/s41592-021-01101-x.

37. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471
-2105-11-119.

38. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD,
Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of
recombinant bacterial whole genome sequences using Gubbins. Nucleic
Acids Res 43:e15. https://doi.org/10.1093/nar/gku1196.

39. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and
effective stochastic algorithm for estimating maximum-likelihood phyloge-
nies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300.

40. Thi Hoang D, Chernomor O, von Haeseler A, Quang Minh B, Sy Vinh L,
Rosenberg MS. 2018. UFBoot2: improving the ultrafast bootstrap approxima-
tion. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281.

41. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017.
ModelFinder: fast model selection for accurate phylogenetic estimates. Nat
Methods 14:587–589. https://doi.org/10.1038/nmeth.4285.

42. Löytynoja A. 2014. Phylogeny-aware alignment with PRANK. Methods
Mol Biol 1079:155–170. https://doi.org/10.1007/978-1-62703-646-7_10.

43. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X,
Ruden DM. 2012. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of Dro-
sophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92.
https://doi.org/10.4161/fly.19695.

44. R Core Team. 2018. R: a language and environment for statistical comput-
ing. 3.5.0. R Foundation for Statistical Computing, Vienna, Austria.

45. Paradis E, Schliep K. 2019. Ape 5.0: an environment for modern phyloge-
netics and evolutionary analyses in R. Bioinformatics 35:526–528. https://
doi.org/10.1093/bioinformatics/bty633.

46. Yu G. 2020. aplot: decorate a “ggplot”with associated information. 0.0.6.
47. Dowle M, Srinivasan A. 2020. data.table: extension of ‘data.frame’.

1.12.8.
48. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. Ggtree: an R package for

visualization and annotation of phylogenetic trees with their covariates
and other associated data. Methods Ecol Evol 8:28–36. https://doi.org/10
.1111/2041-210X.12628.

C. difficile Toxin GWAS and Evolution mSphere

Month YYYY Volume XX Issue XX 10.1128/msphere.00174-22 13

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
17

 M
ay

 2
02

2 
by

 2
60

0:
17

00
:8

a1
1:

25
40

:a
53

3:
96

50
:2

d4
8:

cd
10

.

https://doi.org/10.3389/fcimb.2012.00028
https://doi.org/10.3389/fcimb.2012.00028
https://doi.org/10.1038/srep15023
https://doi.org/10.1371/journal.ppat.1002727
https://doi.org/10.1371/journal.ppat.1002727
https://doi.org/10.3390/toxins8050153
https://doi.org/10.3390/toxins8050153
https://doi.org/10.1016/j.mimet.2011.07.017
https://doi.org/10.1016/j.mimet.2011.07.017
https://doi.org/10.1016/j.anaerobe.2015.02.003
https://doi.org/10.1016/j.anaerobe.2015.02.003
https://doi.org/10.1371/journal.pone.0161711
https://doi.org/10.1101/gr.165415.113
https://doi.org/10.1111/j.1463-6409.1997.tb00423.x
https://doi.org/10.1371/journal.pone.0083748
https://doi.org/10.1016/S0140-6736(05)67420-X
https://doi.org/10.1016/S0140-6736(05)67420-X
https://doi.org/10.1099/mgen.0.000469
https://doi.org/10.1099/mgen.0.000469
https://doi.org/10.1111/j.1365-2958.2010.07495.x
https://doi.org/10.1111/j.1365-2958.2007.05906.x
https://doi.org/10.1371/journal.pgen.1006701
https://doi.org/10.1371/journal.ppat.1006452
https://doi.org/10.1371/journal.ppat.1009181
https://doi.org/10.1371/journal.ppat.1009181
https://doi.org/10.1038/s41467-020-20746-4
https://doi.org/10.1128/JB.01765-07
https://doi.org/10.1128/JB.01765-07
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/tseemann/samclip
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/nar/gku1196
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1093/molbev/msx281
https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1007/978-1-62703-646-7_10
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1111/2041-210X.12628
https://doi.org/10.1111/2041-210X.12628
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00174-22


49. Kassambara A. 2020. ggpubr: “ggplot2” based publication ready plots. 0.4.0.

50. Kolde R. 2019. pheatmap: pretty heatmaps. 1.0.12.

51. Revell LJ. 2012. phytools: an R package for phylogenetic comparative
biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/
10.1111/j.2041-210X.2011.00169.x.

52. WickhamH. 2017. tidyverse: easily install and load the “Tidyverse.” R package
version 1.2.1.

53. Anaconda Inc. 2016. Anaconda software distribution. 2-2.4.0. Anaconda
Inc, New York, NY.

54. Stayton CT. 2008. Is convergence surprising? An examination of the fre-
quency of convergence in simulated datasets. J Theor Biol 252:1–14.
https://doi.org/10.1016/j.jtbi.2008.01.008.

55. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. 2018. pyseer: a com-
prehensive tool for microbial pangenome-wide association studies. Bioin-
formatics 34:4310–4312. https://doi.org/10.1093/bioinformatics/bty539.

C. difficile Toxin GWAS and Evolution mSphere

Month YYYY Volume XX Issue XX 10.1128/msphere.00174-22 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sp
he

re
 o

n 
17

 M
ay

 2
02

2 
by

 2
60

0:
17

00
:8

a1
1:

25
40

:a
53

3:
96

50
:2

d4
8:

cd
10

.

https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1016/j.jtbi.2008.01.008
https://doi.org/10.1093/bioinformatics/bty539
https://journals.asm.org/journal/msphere
https://doi.org/10.1128/msphere.00174-22

	RESULTS
	Distinct evolutionary trajectories of clinically relevant C. difficile phenotypes.
	Phenotypes vary with respect to their association with genetic variation.
	Phenotypes show a range in their levels of phylogenetic convergence.
	Identifying genetic variation associated with phenotypic variation through a genome-wide association study.
	Overlapping GWAS results.
	Genetic variation associated with modulation of cytotoxicity.
	Genetic variation at the PaLoc accounts for only half of the phenotypic variation in cytotoxicity.

	DISCUSSION
	MATERIALS AND METHODS
	Study population.
	In vitro characterization.
	Genomic analysis.
	Phylogenetic analysis.
	Genome-wide association studies.
	Data analysis.
	Permutation testing.
	Convergence analysis.
	Geometric coefficient of variance.
	Phylogenetic signal.
	Elastic net modeling.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

