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ABSTRACT 17 
Bacterial genome-wide association studies (bGWAS) capture associations between genomic 18 
variation and phenotypic variation. Convergence based bGWAS methods identify genomic 19 
mutations that arise more often in the presence of phenotypic variation than is expected by 20 
chance. This work introduces hogwash, an open source R package that implements three 21 
algorithms for convergence based bGWAS. Hogwash additionally contains a novel grouping tool 22 
to perform gene- or pathway-analysis to improve power and increase convergence detection for 23 
related but weakly penetrant genotypes. To identify optimal use cases we applied hogwash to 24 
data simulated with a variety of phylogenetic signals and convergence distributions. These 25 
simulated data are publicly available and contain the relevant metadata regarding convergence 26 
and phylogenetic signal for each phenotype and genotype. Hogwash is available for download 27 
from GitHub. 28 
 29 
DATA SUMMARY 30 

1. hogwash is available from GitHub under the MIT license 31 
(https://github.com/katiesaund/hogwash) and can be installed using the R command 32 
devtools::install_github("katiesaund/hogwash") 33 

2. The simulated data used in this manuscript and the code to generate it are available 34 
from GitHub 35 
(https://github.com/katiesaund/simulate_data_for_convergence_based_bGWAS) 36 

 37 
IMPACT STATEMENT 38 
We introduce hogwash, an R package with three methods for bacterial genome-wide 39 
association studies. There are two methods for handling binary phenotypes, including an 40 
implementation of PhyC(1), as well as one method for handling continuous phenotypes.  We 41 
formulate two novel indices quantifying the relationship between phenotype convergence and 42 
genotype convergence on a phylogenetic tree, one for binary phenotypes and one for 43 
continuous phenotypes. These indices shape an intuitive understanding for the ability of 44 
hogwash to detect significant intersections of phenotype convergence and genotype 45 
convergence and how to interpret hogwash outputs.  46 
 47 
INTRODUCTION 48 
Bacterial Genome-Wide Association Studies 49 
Bacterial genome-wide association studies (bGWAS) infer statistical associations between 50 
genotypes and phenotypes. Seminal bGWAS papers identified novel variants associated with 51 
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antibiotic resistance in M. tuberculosis  and host specificity in Campylobacter(1,2). Since then, 52 
there have been numerous applications of bGWAS that have further highlighted the potential of 53 
this approach to identify genetic pathways underlying phenotypic variation and provide insights 54 
into the evolution of phenotypes of interest. Association studies can use various genetic data 55 
types including single nucleotide polymorphisms (SNPs), k-mers, copy number variants, 56 
accessory genes, insertions, and deletions. To improve the power and interpretability of bGWAS  57 
inclusion criteria or weighting can be applied to these variants based on predicted functional 58 
impact, membership in pathways of interest, or other user preferences(3,4). Differences 59 
between human and bacterial GWAS have been reviewed extensively by Power et al.(5). Of 60 
note, clonality and horizontal gene transfer complicate the application of human GWAS 61 
methodology to bacteria. However, certain bGWAS approaches can leverage unique features of 62 
bacterial evolution, including frequent phenotypic convergence and genotypic convergence, to 63 
identify phenotype-genotype correlations. 64 
 65 
bGWAS Software 66 
bGWAS methods can be classified into non-exclusive groups based on some critical features: 67 
A) methods for SNPs, accessory genes(6), or k-mers(7),  B) methods using regression(7,8) or 68 
phylogenetic convergence(1,9), and C) methods designed for humans(10) or specifically for 69 
bacteria(7,9). Differences between regression based and convergence based bGWAS were 70 
expertly reviewed by Chen and Shapiro(11). Convergence based methods identify multiple 71 
independent events where a genomic mutation arises more often in the presence of the 72 
phenotype of interest. Convergence based methods can yield higher significance with a smaller 73 
sample size, but may fail to identify some statistical associations that traditional GWAS 74 
approaches would identify when the population is clonal(11). Additionally, convergence based 75 
methods are limited to smaller data sets because of their large memory requirements and 76 
computational time relative to traditional methods(12), but can surmount issues of clonality and 77 
take advantage of horizontal gene transfer.   78 
 79 
Objective 80 
This work describes hogwash, an R package that implements three different convergence 81 
based bGWAS approaches available on GitHub. Two approaches, PhyC and the Synchronous 82 
Test, handle binary phenotypes while the third approach, the Continuous Test, handles 83 
continuous phenotypes. PhyC is an algorithm introduced by Farhat et al.(1) that we implement. 84 
The Synchronous Test is a stringent variation of PhyC, requiring a tighter relationship between 85 
the genotype and phenotype. We describe the algorithms and evaluate them on a set of 86 
simulated data.  87 
 88 
Alternative Approach to Grouped Genotype Analysis 89 
Pathway analysis is a common post-GWAS approach that groups loci into meaningful groups, 90 
such as mapping SNPS to pathways(13,14). Analyzing aggregated loci can improve both the 91 
interpretability of GWAS results and improve power to detect associations(13,14). However, 92 
post-GWAS pathway analysis may not surmount the high stringency of convergence based 93 
bGWAS approaches. Hogwash implements a novel grouping tool prior to performing the 94 
bGWAS that may avoid this potential loss of information and improve convergence detection for 95 
related but weakly penetrant genotypes. 96 
 97 
Data Simulation  98 
We evaluate hogwash results on simulated data generated to capture aspects of bacterial 99 
evolution pertinent to these bGWAS approaches. We simulated data with a range of 100 
phylogenetic signals and convergence distributions to highlight the critical impact of these 101 
features on bGWAS results. The simulated data are publicly available and could be used to 102 
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compare the impact of convergence patterns within phenotypes, genotypes, and their 103 
intersection when benchmarking various convergence based bGWAS methods.   104 
 105 
PACKAGE DESCRIPTION 106 
We developed hogwash to allow users to perform three bGWAS methods, including an open 107 
source implementation of the previously described PhyC algorithm(1), and aggregate genotypes 108 
by user-defined groups. The hogwash function minimally requires a phenotype, a phylogenetic 109 
tree, and a binary genotype matrix. An optional argument may be supplied to facilitate grouping 110 
genotypes. The genotype matrix and tree can be prepared from a multiVCF file by the variant 111 
preprocessing tool prewas(15). Hogwash assumes that the genotype is encoded such that 0 112 
refers to wild type and 1 refers to a mutation and that binary phenotypes are encoded such that 113 
0 refers to absence and 1 refers to presence. 114 
 115 
In brief, the hogwash workflow (Figure 1A) begins with the user supplying a phenotype, a set of 116 
genotypes, and a tree. Hogwash performs ancestral state reconstruction for the phenotype and 117 
genotypes. If the user supplies a key to group together genotypes, hogwash groups them after 118 
the genotype ancestral state reconstructions. The convergence of each phenotype and each 119 
genotype are recorded as the edges where they intersect on the tree (Figure 1B); the definition 120 
of convergence and intersection is unique for each of the three association tests. Then the 121 
genotype is permuted, and its intersection with the phenotype is recorded as a null distribution. 122 
Significance is calculated with correction for multiple testing.  123 
 124 
PhyC 125 
PhyC is a convergence based bGWAS method introduced by Farhat et al.(1) that identified 126 
novel antibiotic resistance-conferring mutations in M. tuberculosis. To our knowledge, the 127 
original PhyC code is not publicly available, but the algorithm is well described in the original 128 
paper. The algorithm addresses the following question: Does the genotype transition from wild 129 
type, 0, to mutant, 1, occur more often than expected by chance on tree edges where the 130 
phenotype is present, 1, than where the phenotype is absent, 0? By requiring the overlap of the 131 
phenotype with the genotype transition, instead of genotype presence, associations are not 132 
inflated by clonal sampling and thus this approach controls for population structure. We 133 
implement the PhyC algorithm as described in Farhat et al.(1). 134 
 135 
For each test we formulate the following terms: ���������  and ����������. In PhyC (Figure 2) 136 
���������  is a non-negative integer that records the number of tree edges where the genotype 137 
arises (mutation appears). This is encoded as a tree edge where the parent node is evaluated 138 
as 0 by ancestral state reconstruction and child node is evaluated as 1. These edges are called 139 
genotype transitions. In PhyC ����������  is a non-negative integer that records the number of 140 
tree edges where the phenotype is present. This is encoded as a tree edge where the child 141 
node is evaluated as 1 by ancestral state reconstruction. The number of edges on the tree 142 
where both a genotype arises and the phenotype is present is calculated as ��������� �143 
����������.  144 
 145 
For the permutation the genotype mutations (���������) are randomized on the tree. The 146 
number of edges where the permuted genotype mutation intersects with phenotype presence 147 
edges is recorded for each permutation; these permuted ��������� � ����������  values create a 148 
null distribution. An empirical P-value is calculated based on the observed ��������� � ���������� 149 
as compared to the null distribution.  150 
 151 
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Our PhyC implementation has several important differences from the original paper. First, 152 
multiple test correction in hogwash is performed with False Discovery Rate instead of the more 153 
stringent Bonferroni correction. Second, hogwash reduces the multiple testing burden by testing 154 
only those genotype-phenotype pairs for which convergence is detectable; genotypes with 155 
��������� � 2 are excluded and genotype-phenotype pairs with ��������� � ����������  � 2 are 156 
assigned a P-value of 1. Third, ancestral state reconstruction for genotypes and phenotypes 157 
was performed using only maximum likelihood. Finally, users only supply one phylogenetic tree 158 
instead of three.  159 
 160 
Synchronous Test 161 
This test (Figure 2) is an extension of PhyC but requires more stringent association between the 162 
genotype and phenotype. The Synchronous Test addresses the question: Do genotype 163 
transitions occur more often than expected by chance on phenotype transition edges than on 164 
phenotype non-transition edges? Both PhyC and the Synchronous Test are only appropriate for 165 
binary phenotypes. 166 
 167 
The Synchronous Test ���������  is a non-negative integer that records the number of tree edges 168 
where the genotype changes (mutation appears or disappears). This is encoded as a tree edge 169 
where the parent node value as inferred from ancestral state reconstruction is different than the 170 
child node. These edges are called genotype transitions. The Synchronous Test ����������  is a 171 
non-negative integer that records the number of tree edges where the phenotype changes. This 172 
is encoded as a tree edge where the phenotype parent node is different than the child node as 173 
inferred from ancestral state reconstruction. The number of edges on the tree where both a 174 
genotype transitions and the phenotype transitions is calculated as ��������� � ���������� . As in 175 
PhyC, the genotypes with ��������� � 2 are removed, genotype-phenotype pairs with  176 
��������� � ���������� � 2 are assigned a P-value of 1,and the remaining genotypes are 177 
permuted and a null distribution of the ��������� � ����������  is calculated to determine the 178 
significance of each genotype. 179 
 180 
This test is similar to the Simultaneous Score in treeWAS(9). The Simultaneous Score is 181 
derived from the number of edges on the tree where the genotype and phenotype transition in 182 
the same direction (both have an inferred parent node of 0 and an inferred child node of 1 or 183 
parent node of 0 and child node of 1). In contrast, the Synchronous Test in hogwash allows for 184 
the phenotype and genotype transition directions to mismatch, thus allowing for the detection of 185 
genotypes with inconsistent effect directions.  186 
  187 
Continuous Test 188 
The Continuous Test (Figure 2) is an application of a convergence based GWAS method to 189 
continuous phenotypes. The Continuous Test addresses the question: Does the phenotype 190 
change more than expected by chance on genotype transition edges than on genotype non-191 
transition edges? 192 
 193 
The Continuous Test ���������  is a non-negative integer that records the number of tree edges 194 
where the genotype changes (mutation appears or disappears). This is encoded as a tree edge 195 
where the parent node value as inferred from ancestral state reconstruction is different than the 196 
child node (Figure 1B). These edges are called genotype transitions.  197 
Formula 1. 198 

∆�	��  � |	
����	��
���� ��	� � 	
����	����	 ��	�| 
 199 
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A ∆�	��value is calculated for each tree edge and is scaled from 0 to 1. The Continuous Test 200 
����������  is the sum of all ∆�	�� values that occur on high confidence edges. ��������� �201 
���������� is the multiplicative sum of the ∆�	�� and ���������. As above, the genotypes with 202 
��������� � 2 are removed; the remaining genotypes are permuted and a null distribution of 203 
the ��������� � ���������� is calculated to determine the significance of each genotype. 204 
 205 
User inputs 206 
The user must provide a phylogenetic tree, genotype matrix, and a phenotype. The user may 207 
optionally provide a key that maps individual genomic loci into groups in order to use hogwash’s 208 
grouping feature. For a detailed description of the user inputs please see the Supplementary 209 
Package Description.  210 
 211 
Hogwash outputs  212 
The package produces two files per test: data (.rda) and plots (.pdf). The data file contains 213 
many pieces of information, including P-values for each tested genotype. The plots are 214 
described below in the results section.  215 
 216 
Grouping feature 217 
To identify an association between a genomic variant and a phenotype, hogwash requires that a 218 
variant occur in multiple different lineages. Hogwash may classify some causal variants as 219 
independent of a phenotype if they are weakly penetrant, an issue common to convergence 220 
based methods. To surmount this issue, related genomic variants may be aggregated to capture 221 
larger trends at the grouped level. For example, a user may apply this method to group only 222 
nonsynonymous SNPs by gene to use hogwash to detect associations between the mutated 223 
gene and the phenotype. Grouping related variants can improve power through a reduction in 224 
the multiple testing correction penalty. However, the power benefits are dependent on grouping 225 
variants with similar effect directions.  226 
 227 
Hogwash implements the grouping features by first performing ancestral state reconstruction for 228 
each individual locus (Figure 3). If the user supplies a key that maps individual loci to groups, 229 
then the edges contributing to ���������  for individual loci are joined together into the indicated 230 
group. Grouped loci with ��������� � 2 are excluded from analysis. After this point hogwash 231 
runs as previously described for non-grouped genotypes.  232 
 233 
Users may supply hogwash with data that was previously grouped (for example, using the group 234 
SNPs by gene functionality in prewas(15)) but this approach may mask some genotype 235 
transitions. In this case, the user does not need to provide a key and the hogwash grouping step 236 
is skipped.  237 
 238 
METHODS 239 
Data simulation 240 
Trees 241 
We simulated four random coalescent phylogenetic trees with 100 tips each.  242 
 243 
Phenotypes 244 
For each tree we simulated phenotypes that model either Brownian motion or white noise. A 245 
phenotype modeled well with white noise may suggest a role for horizontal gene transfer, gene 246 
loss, or convergent evolution(16). A white noise phenotype may be better suited to the hogwash 247 
algorithms than a phenotype modeled by Brownian motion given the requirement for 248 
phylogenetic convergence. A continuous phenotype that is modeled well by Brownian motion 249 
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has a phylogenetic signal, �, near 1 while a white noise phenotype has a phylogenetic signal 250 
near 0(17). In contrast, a binary phenotype that is modeled well by Brownian motion has a 251 
phylogenetic signal, � statistic, near 0 while a white noise phenotype has a phylogenetic signal 252 
near 1(18). For each tree we simulated sixteen phenotypes: eight phenotypes with a 253 
phylogenetic signal fitting a Brownian motion model (four binary and four continuous), and eight 254 
phenotypes with a phylogenetic signal fitting a white noise model (four binary and four 255 
continuous). For phenotypes modeling Brownian motion, binary phenotypes were restricted to 256 
�0.05 � � � 0.05 and continuous phenotypes to 0.95 �  � � 1.05. For phenotypes modeling 257 
white noise, binary phenotypes were restricted to 0.95 � � � 1.05 and continuous phenotypes 258 
to �0.05 �  � � 0.05.  259 
 260 
Genotypes 261 
For each simulated tree a set of unique binary genotypes were generated. We generated 262 
genotypes that span a range of phylogenetic signals, degree of similarity to the phenotype, and 263 
prevalence.  264 
Genotypes to be used in discrete hogwash tests  265 
First, 25,000 binary genotypes were generated using ape::rTraitDisc; these genotypes have a 266 
range of phylogenetic signals(19). Second, these genotypes were duplicated and randomized 267 
with the following approach: one quarter had 10% of tips changed, one quarter had 25% of tips 268 
changed, one quarter had 40% of tips changed, and one quarter were entirely redistributed. 269 
Third, we removed any simulated genotypes present in 0, 1, � � 1, or � samples. Fourth, we 270 
subset the genotypes to keep only unique presence/absence patterns. Fifth, we subset 271 
genotypes to only those within a range of �1.5 � � � 1.5. These filtering steps result in a 272 
reduction in the data set size (range 2214-2334).  273 
Genotypes to be in used in the Continuous Test 274 
In addition to the five steps above we added two more data generation steps. First, we made all 275 
possible genotypes based on the rank of the continuous phenotype. Second, we made 276 
genotypes based on which edges of the tree had high ∆����. The filtering steps reduced the 277 
data set size (range 1234-1310).  278 
 279 
Hogwash on simulated data 280 
We ran each hogwash test for each of the tree-phenotype-genotype sets. In addition to 281 
generating P-values for each tested genotype, hogwash also reports convergence information. 282 
We ran hogwash with the following settings: permutations = 50,000; false discovery rate = 283 
0.0005 (discrete), 0.05 (continuous); bootstrap value = 0.70; no genotype grouping key was 284 
provided.  285 
 286 
Calculation of �������� ,  �	������� and � 287 
Using the ancestral state reconstruction data, hogwash identified convergence within each 288 
genotype (��������), phenotype (�	�������), and their weighted intersection (�). 289 
Formula 2.  290 

�
���� �
2 � ��������� � �	��������

�������� � �	�������
 

 291 
Where 0 � �������� � ������ ���� ���  and 0 � �	������� � ������ ���� ��� ; both 292 
��������  and �	�������  are integers. Therefore, 0 � � � 1. 293 
 294 
Formula 3.  295 
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����������� �
�������� � �	�������

�������� � �	������� �  �������� � �	�������  
 

 296 
Where 0 � �������� � ������ ���� ���  and 0 � �	������� � ������ ���� ��� . �������� �297 
�	������� is the multiplicative sum of the ∆���� and ��������. The denominator is ��������  !298 
 �	�������. Therefore, 0 � � � 1. 299 
 300 
Data analysis 301 
Statistical analyses were conducted in R v3.6.2(20). The R packages used can be found in the 302 
simulate_data.yaml file on GitHub(19,21–25) and can be installed using miniconda(26).   303 
 304 
RESULTS  305 
Hogwash output for simulated data 306 
Hogwash outputs two sets of results: a data file and a PDF file with plots. Each run of PhyC 307 
produces at least three plots: the phenotype reconstruction (Figure 4A), a Manhattan plot 308 
(Figure 4D), and a heatmap of all tested genotypes (Figure 4E). The phenotype reconstruction, 309 
also referred to as �	������� , is highlighted on the tree (Figure 4A). The Manhattan plot shows 310 
the distribution of P-values from the hogwash run (Figure 4D). Lastly, the heatmap shows the 311 
genotype reconstruction (��������) and phenotype reconstruction (�	�������) for each tree 312 
edge (rows) and genotype (columns) (Figure 4E). The genotypes are clustered by the �������� 313 
presence/absence pattern. Two additional plots are produced for each genotype that is 314 
significantly associated with the phenotype: a phylogenetic tree showing the genotype transition 315 
edges (Figure 4B) and the null distribution of �������� � �	�������  (Figure 4C).  316 
 317 
The Synchronous Test and Continuous Test output plots that reflect their test-specific 318 
��������  and �	�������  definitions (Figure S1, S2). Running hogwash on 100 samples required 319 
�3 hours and �2 GB of memory for binary data and �5 hours and �2 GB of memory for 320 
continuous data (Figure S3). 321 
 322 
Hogwash evaluation on simulated data 323 
To help users identify optimal use cases and also interpret hogwash results we describe the 324 
behavior of hogwash on simulated data. We note that this assessment is not meant to convey 325 
performance in the sense of calculating sensitivity and specificity, but rather evaluate whether 326 
hogwash can robustly detect the association between phenotypic and genotypic convergence. 327 
To guide our assessment, we compared the relationship between the P-value and � values 328 
produced by hogwash on sets of simulated data constructed using different evolutionary models 329 
(Figure 5). � is a quantification of the relationship between phenotype convergence and 330 
genotype convergence; we define � for the discrete and continuous tests in Formulae 2 and 3, 331 
respectively. Low � values indicate little to no intersection of phenotype convergence and 332 
genotype convergence, while higher � values indicate their increased intersection.  333 
 334 
For discrete phenotypes, we observe an overall strong positive association between -log(P-335 
value) and �, demonstrating that as the intersection of phenotype convergence and genotype 336 
convergence increase hogwash predicts that it is less likely that they intersect due to chance 337 
(Table 1). In other words, below a certain �
���� threshold, hogwash attributes the association 338 
between the genotype convergence and phenotype convergence to chance; from Figure 5 the 339 
user can get a sense for the range of this �
���� threshold under different evolutionary regimes. 340 
 341 
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For the simulated continuous data an ����������� threshold that separates meaningful genotype-342 
phenotype associations from associations by chance is less apparent. Higher �, low significance 343 
values demonstrate that some overlap of ��������  and �	������� is likely by chance given the 344 
data. Low �, high significance values demonstrate that some values with even small amounts of 345 
��������  and �	������� overlap are unlikely, however that does not necessarily suggest  that 346 
these hits are the best candidates for in vitro follow up. We suspect that these associations are 347 
largely driven by poor exploration of the sampling space, despite running many permutations, 348 
because of the edge-length based sampling probability of the permutation method. Therefore, it 349 
is essential P-values be interpreted within the context of �. Notably, the Continuous Test was 350 
only able to detect significant genotype-phenotype associations for phenotypes modeled by 351 
white noise, suggesting this method is particularly sensitive to the phenotype’s evolutionary 352 
model.  353 
 354 
We observe for both the discrete and continuous tests that � is more tightly correlated with -355 
log(P-value) for phenotypes characterized by white noise than by Brownian motion (Table 1), 356 
indicating that hogwash performs better under a white noise model. Thus, to help the user in 357 
assessing the appropriateness of hogwash and in interpreting their results we allow users to 358 
check if their phenotype is better modeled by white noise than Brownian motion by using the 359 
report_phylogenetic_signal function. 360 
 361 
 362 
DISCUSSION 363 
We have developed hogwash, an open-source R package that implements three different 364 
approaches to bGWAS and includes the previously described PhyC algorithm(1). Hogwash also 365 
introduces a novel grouping feature to aggregate related genomic variants to increase detection 366 
of convergence for weakly penetrant genotypes. Hogwash is best used for datasets comprising 367 
binary and/or continuous phenotypes, phenotypes fitting white noise models, situations where 368 
convergence may occur at the level of genes or pathways and with datasets whose size can be 369 
accommodated given the time and memory constraints of convergence methods.  370 
 371 
The results of running hogwash on simulated data suggest that after a certain � threshold, it 372 
unlikely that the intersection between phenotype convergence and genotype convergence 373 
occurs by chance, particularly for white noise phenotypes. Given the variability in results within 374 
each method, as shown in Figure 5, users may want to contextualize the statistical significance 375 
of the tested genetic loci with the amount of convergence possible for any one particular data 376 
set; to facilitate this the hogwash output includes both P-values and �. 377 
 378 
The simulated data set presented here is published to serve as a resource or template for future 379 
work focused on benchmarking convergence based bGWAS software as such a dataset has not 380 
yet, as far as we are aware, been made available(27). The simulated data set is available on 381 
GitHub and includes convergence information for each phenotype, genotype, and their 382 
intersection.  383 
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FIGURES 467 
 468 

 469 
Figure 1. Hogwash workflow and tree nomenclature. 470 
A) Software workflow. B) In this example phylogenetic tree N1 is the root. Tree nodes are 471 
labeled N1 – N3. Tree tips are labeled T1 – T4. N1 is a parent node to N2 and N3. N2 is a child of 472 
N1 and a parent to T1 and T2. Edges are lines connecting a parent node to a child node or a 473 
parent node to a tip.  474 
 475 

or 

. 
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 476 
Figure 2. Schematic of PhyC, Synchronous, and Continuous Tests. Tree edges indicate: 477 
binary phenotype presence (pink), continuous phenotype value (rainbow),  (red), 478 
genotype presence (light blue),  (dark blue), and  (purple).    479 
 480 

 481 
Figure 3. Example of hogwash grouping feature. In this case, three SNPs are found in the 482 
same gene (Gene A). No individual SNP is convergent on the tree. Hogwash performs ancestral 483 
state reconstruction on each SNP. The edges where SNP presence is inferred are colored. 484 

ral 
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Next, hogwash identifies the  for each SNP (colored edges). Finally, hogwash 485 
combines the three SNP  together to create the Gene A  (purple edges). 486 
When the SNPS are grouped into Gene A the genotype converges on the tree.  487 
 488 

489 
Figure 4. Example output from hogwash PhyC results from simulated data. A) Edges with: 490 
phenotype presence ( ) in red; phenotype absent in black; low confidence in tree or 491 
low confidence phenotype ancestral state reconstruction in gray. B) Edges with: genotype 492 
mutations that arose ( ) in red; genotype mutation did not arise in black; low confidence 493 
in tree or low confidence genotype ancestral state reconstruction in gray. C) Null distribution of 494 

. D) Manhattan plot for all tested genotypes. E) Heatmap with tree edges 495 
in the rows and genotypes in the columns. The genotypes are hierarchically clustered. The 496 
genotypes are classified as being a transition edge in black or non-transition edge in white. The 497 
column annotations pertain to loci significance; green indicates the P-value while blue indicates 498 
that the P-value is more significant than the user-defined threshold. The row annotation 499 
classifies the phenotype at each edge; red indicates phenotype presence and white indicates 500 
phenotype absence. Gray indicates a low confidence tree edge; low confidence can be due to 501 
low phenotype ancestral state reconstruction likelihood, low genotype ancestral state 502 
reconstruction likelihood, low tree bootstrap value, or long edge length.  503 
 504 
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 505 
Figure 5. High  values correlate with increased significance. Each plot is a tree-phenotype 506 
pair. Each point represents one genotype-phenotype pair.  507 
 508 

e 
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TABLES 509 

 510 
Table 1. Mean Spearman’s rank correlation coefficient for -ln(P-value) versus  from 511 
hogwash run on simulated data. The ρ could not be calculated for the results from the 512 
Continuous Test on the Brownian motion phenotypes because, after multiple testing correction, 513 
all P-values are identical. 514 
 515 
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Figure S1. Example output from hogwash Synchronous Test results on simulated data
A) Ancestral reconstruction of phenotype. Phenotype transition edges (βphenotype) in red, phenotype non-transitions 
edges in black, low confidence edges in gray. B) Ancestral reconstruction of simulated genotype. Genotype transi-
tion edges (βgenotype) in red; non-transition edges in black; low confidence edges in gray. C) Null distribution of          
βgenotype ∩ βphenotype; observed value in red. D) Manhattan plot for all tested genotypes. Significance threshold indicat-
ed in red. E) Heatmap with tree edges in the rows and genotypes in the columns. The genotypes are hierarchically 
clustered. The genotypes are classified as being a transition edge in black or non-transition edge in white. The 
column annotations pertain to the P-value; green is the P-value and blue indicates that the P-value is more signifi-
cant that the user-defined threshold. The row annotation classifies the phenotype edge type. Phenotype transition 
edges are in red and non-transition edges are in white. Gray indicates a low confidence tree edge; low confidence 
can be due to low genotype ancestral state reconstruction likelihood, low tree bootstrap value, or long edge length. 
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Figure S2. Example output from the Continuous Test run on simulated data.
 A) Reconstruction for a simulated genotype. Wild type in black, variant presence in red, and low confidence edges in gray. B) Genotype transition edges 
(βgenotype) in red; non-transition edges in black; low confidence in tree or low confidence genotype ancestral state reconstruction in gray. C) Histogram of 
the change in phenotype per edge for high confidence tree edges. Genotype transition edges in red and genotype non-transition edges in gray. D) Null 
distribution of βgenotype ∩ βphenotype; observed value in red. E) Ancestral reconstruction of phenotype. F) Manhattan plot for all tested genotypes. The signifi-
ance threshold is indicated in red. G) Heatmap with tree edges in the rows and genotypes in the columns. The genotypes are hierarchically clustered. 
The genotypes are classified as being a transition edge in black or non-transition edge in white. The column annotations pertain to the P-value; purple 
indicates the P-value and blue indicates that the P-value is more significant that the user-defined threshold. The row annotation shows the absolute value 
in the phenotype change per edge. Gray indicates a low confidence tree edge; low confidence can be due to low genotype ancestral state reconstruction 
likelihood, low tree bootstrap value, or long edge length. 
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Figure S3. Memory usage and run time for hogwash on simulated data.
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